18 research outputs found

    An Ontology Based Approach Towards A Universal Description Framework for Home Networks

    Get PDF
    Current home networks typically involve two or more machines sharing network resources. The vision for the home network has grown from a simple computer network, to every day appliances embedded with network capabilities. In this environment devices and services within the home can interoperate, regardless of protocol or platform. Network clients can discover required resources by performing network discovery over component descriptions. Common approaches to this discovery process involve simple matching of keywords or attribute/value pairings. Interest emerging from the Semantic Web community has led to ontology languages being applied to network domains, providing a logical and semantically rich approach to both describing and discovering network components. In much of the existing work within this domain, developers have focused on defining new description frameworks in isolation from existing protocol frameworks and vocabularies. This work proposes an ontology-based description framework which takes the ontology approach to the next step, where existing description frameworks are in- corporated into the ontology-based framework, allowing discovery mechanisms to cover multiple existing domains. In this manner, existing protocols and networking approaches can participate in semantically-rich discovery processes. This framework also includes a system architecture developed for the purpose of reconciling existing home network solutions with the ontology-based discovery process. This work also describes an implementation of the approach and is deployed within a home-network environment. This implementation involves existing home networking frameworks, protocols and components, allowing the claims of this work to be examined and evaluated from a ‘real-world’ perspective

    Discovering Homecare Services

    Get PDF
    Future homecare networks will consist of a very wide range of embedded services and software that will often rely on numerous other components to achieve their tasks. They will rarely operate in a self sufficient manner. The ability to discover and use services is not however a trivial task. Services may provide raw data, such as temperature readings, or higher contextual data, such as user activity and availability. Networks may change over time and may not be subject to a single management regime, implying the need for a great deal of self-reliance for any software component seeking services from elsewhere within the network. This chapter describes work carried out at the University of Stirling to improve service discovery and allow it to operate effectively in networks with a significant turnover in services. Simple syntactical keyword lookups are insufficient, and so semantics are introduced into the discovery process by using ontologies. However ontologies are known to grow and change over time and so maintaining them can be difficult and error-prone. The described approach employs a hierarchical approach that fosters re-use and sharing of ontologies to alleviate some of the more acute problems of building and maintaining large ontologies

    Services and Policies for Care at Home

    Get PDF
    It is argued that various factors including the increasingly ageing population will require more care services to be delivered to users in their own homes. Desirable characteristics of such services are outlined. The Open Services Gateway initiative has been adopted as a widely accepted framework that is particularly suitable for developing home care services. Service discovery in this context is enhanced through ontologies that achieve greater flexibility and precision in service description. A service ontology stack allows common concepts to be extended for new services. The architecture of a policy system for home care is explained. This is used for flexible creation and control of new services. The core policy language and its extension for home care are introduced, and illustrated through typical examples. Future extensions of the approach are discussed

    A Scalable Home Care System Infrastructure Supporting Domiciliary Care

    Get PDF
    Technology-mediated home care is attractive for older people living at home and also for their carers. It provides the information necessary to give confidence and assurance to everyone interested in the wellbeing of the older person. From a care delivery perspective, however, widespread deployment of home care technologies presents system developers with a set of challenges. These challenges arise from the issues associated with scaling from individual installations to providing a community-wide service, particularly when each installation is to be fitted to the particular but changing needs of the residents, their in-home carers and the larger healthcare community. This paper presents a home care software architecture and services that seek to address these challenges. The approach aims to generate the information needed in a timely and appropriate form to inform older residents and their carers about changing life style that may indicate a loss of well-being. It unites sensor-based services, home care policy management, resource discovery, multimodal interaction and dynamic configuration services. In this way, the approach offers the integration of a variety of home care services with adaptation to the context of use

    Characteristics and risk factors for post-COVID-19 breathlessness after hospitalisation for COVID-19.

    Get PDF
    BACKGROUND: Persistence of respiratory symptoms, particularly breathlessness, after acute coronavirus disease 2019 (COVID-19) infection has emerged as a significant clinical problem. We aimed to characterise and identify risk factors for patients with persistent breathlessness following COVID-19 hospitalisation. METHODS: PHOSP-COVID is a multicentre prospective cohort study of UK adults hospitalised for COVID-19. Clinical data were collected during hospitalisation and at a follow-up visit. Breathlessness was measured by a numeric rating scale of 0-10. We defined post-COVID-19 breathlessness as an increase in score of ≥1 compared to the pre-COVID-19 level. Multivariable logistic regression was used to identify risk factors and to develop a prediction model for post-COVID-19 breathlessness. RESULTS: We included 1226 participants (37% female, median age 59 years, 22% mechanically ventilated). At a median 5 months after discharge, 50% reported post-COVID-19 breathlessness. Risk factors for post-COVID-19 breathlessness were socioeconomic deprivation (adjusted OR 1.67, 95% CI 1.14-2.44), pre-existing depression/anxiety (adjusted OR 1.58, 95% CI 1.06-2.35), female sex (adjusted OR 1.56, 95% CI 1.21-2.00) and admission duration (adjusted OR 1.01, 95% CI 1.00-1.02). Black ethnicity (adjusted OR 0.56, 95% CI 0.35-0.89) and older age groups (adjusted OR 0.31, 95% CI 0.14-0.66) were less likely to report post-COVID-19 breathlessness. Post-COVID-19 breathlessness was associated with worse performance on the shuttle walk test and forced vital capacity, but not with obstructive airflow limitation. The prediction model had fair discrimination (concordance statistic 0.66, 95% CI 0.63-0.69) and good calibration (calibration slope 1.00, 95% CI 0.80-1.21). CONCLUSIONS: Post-COVID-19 breathlessness was commonly reported in this national cohort of patients hospitalised for COVID-19 and is likely to be a multifactorial problem with physical and emotional components

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study

    Get PDF
    Background The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). Findings We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5·9 months (IQR 4·9–6·5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40–59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity. Interpretation We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care. Funding UK Research and Innovation and National Institute for Health Research

    Managing Home Care Networks

    No full text
    Home care networks are a new development for automated support of care at home. To address the challenges of home care, the paper describes a component-based architecture developed by the MATCH project (Mobilising Advanced Technologies for Care at Home). Two key components are discussed for managing home care networks. A Service Registry supports generic and extensible registration of services, components, resources and devices in the home. The registry uses ontologies for semantically-based description and discovery. A Policy System automates support of how a home network should deliver care. The views of stakeholders in home care are represented as goals and policies. These are defined in a user-friendly manner and are applied at run-time. Conflicts among goals and policies are automatically detected and resolved
    corecore